Installation Guide 📦
[!TIP] Quick start: If you're just exploring FlowyML, run
pip install "flowyml[all]"and you're ready to go. Come back to this page when you need production-grade deployment. To add support for interactive GUI:pip install "flowyml[ui]".
System Requirements
- Python: 3.8 or higher (3.10+ recommended for best performance)
- Operating System: Linux, macOS, Windows (WSL2 recommended for Windows)
- Memory: Minimum 4GB RAM (8GB+ for larger pipelines)
- Disk Space: 500MB for full installation
Why these requirements: FlowyML is designed to run anywhere Python runs. The minimum specs support local development; production workloads scale based on your pipeline needs.
Installation Options
Choose the installation that matches your use case:
Basic Installation — Local Development Only
Install FlowyML core package:
What you get: Core pipeline orchestration, local artifact storage, metadata tracking.
Use this when: You're prototyping locally and don't need cloud deployment or the web UI yet.
Full Installation — Everything Included (Recommended)
What you get: Web UI, cloud integrations, ML framework support, everything.
Use this when: You want to try all FlowyML features without reinstalling. This is the recommended approach for new users.
Optional Dependencies — Pick What You Need
For minimal installations or specific production setups, install only what you need:
ML Framework Support
# TensorFlow/Keras automatic tracking
pip install "flowyml[tensorflow]"
# PyTorch integration
pip install "flowyml[pytorch]"
# Scikit-learn utilities
pip install "flowyml[sklearn]"
Use this when: You're building Docker images and want to minimize size, or you only use specific frameworks.
Cloud Platform Support
# Google Cloud Platform (Vertex AI, GCS, Container Registry)
pip install "flowyml[gcp]"
# AWS support (coming soon)
pip install "flowyml[aws]"
# Azure support (coming soon)
pip install "flowyml[azure]"
Use this when: You're deploying to cloud and want cloud-specific features like managed orchestration (Vertex AI), cloud storage (GCS/S3), and container registries.
Web UI & API Server
What you get: The visualization dashboard, REST API,real-time monitoring.
Use this when: You need the visual interface for debugging or monitoring, or building tools that integrate with FlowyML's API.
Development
Install development dependencies:
Combining Extras
You can combine multiple extras:
# TensorFlow + GCP
pip install flowyml[tensorflow,gcp]
# All ML frameworks + GCP
pip install flowyml[tensorflow,pytorch,sklearn,gcp]
# Everything including UI
pip install flowyml[all]
From Source
Docker
# Basic image
docker pull flowyml/flowyml:latest
# With TensorFlow
docker pull flowyml/flowyml:latest-tf
# With PyTorch
docker pull flowyml/flowyml:latest-torch
# Full image
docker pull flowyml/flowyml:latest-full
Verification
Verify installation:
import flowyml
print(flowyml.__version__)
# Check available features
from flowyml import check_features
check_features()
Requirements by Use Case
Local Development
ML Training (TensorFlow)
ML Training (PyTorch)
Production on GCP
Full Development Setup
Installation Best Practices 💡
Use Virtual Environments
Always use virtual environments to avoid dependency conflicts:
# Using venv (built-in)
python -m venv flowyml-env
source flowyml-env/bin/activate # Windows: flowyml-env\Scripts\activate
pip install "flowyml[all]"
# Using conda
conda create -n flowyml python=3.10
conda activate flowyml
pip install "flowyml[all]"
Why this matters: Prevents conflicts with other Python projects and makes it easy to reproduce your environment.
Pin Versions in Production
For production deployments, pin exact versions:
# Generate requirements file
pip freeze > requirements.txt
# Or use Poetry (recommended)
pip install flowyml[all]
poetry lock
Why this matters: Ensures reproducible deployments and prevents surprise breakages from dependency updates.
Troubleshooting Common Issues
"Module not found" errors for optional features
Problem: You see ImportError or ModuleNotFoundError when using specific features.
Solution: Install the corresponding extra:
# For TensorFlow features
pip install "flowyml[tensorflow]"
# For GCP features
pip install "flowyml[gcp]"
# Or just install everything
pip install "flowyml[all]"
Dependency version conflicts
Problem: pip reports conflicts between FlowyML's dependencies and existing packages.
Solution: Create a fresh virtual environment:
# Deactivate current environment if active
deactivate
# Create new environment
python -m venv new-flowyml-env
source new-flowyml-env/bin/activate
pip install "flowyml[all]"
Python version too old
Problem: Installation fails with Python version errors.
Solution: Upgrade Python to 3.8 or higher:
# Check current version
python --version
# Using conda (recommended)
conda create -n flowyml python=3.10
conda activate flowyml
# Or use pyenv
pyenv install 3.10.0
pyenv local 3.10.0
GCP authentication issues
Problem: Can't access GCS or Vertex AI.
Solution: Authenticate with gcloud:
# Install gcloud CLI first: https://cloud.google.com/sdk/docs/install
gcloud auth login
gcloud auth application-default login
gcloud config set project YOUR-PROJECT-ID
Installation is slow
Problem: pip install takes a very long time.
Solution: Clear pip cache or use a faster mirror:
# Clear cache
pip cache purge
# Or upgrade pip/setuptools
pip install --upgrade pip setuptools wheel
# Then retry
pip install "flowyml[all]"
Next Steps
Once installed:
- Verify installation: Run
flowyml --versionto confirm - Build your first pipeline: Follow the Getting Started guide
- Explore examples: Check out the Examples page for real-world patterns
Need help? Visit the Resources page for community support and troubleshooting guides.