β‘ HyperZZWOperator
β‘ HyperZZWOperator
π― Overview
The HyperZZWOperator computes context-dependent weights by multiplying inputs with hyper-kernels. This specialized layer takes two inputs: the original input tensor and a context tensor, then generates hyper-kernels from the context to perform context-dependent transformations.
This layer is particularly powerful for specialized transformations where the processing should depend on contextual information, making it ideal for advanced neural network architectures and context-aware processing.
π How It Works
The HyperZZWOperator processes data through context-dependent transformations:
- Input Processing: Takes input tensor and context tensor
- Hyper-Kernel Generation: Generates hyper-kernels from context
- Context-Dependent Transformation: Applies context-dependent weights
- Weight Computation: Computes context-dependent weights
- Output Generation: Produces transformed features
graph TD
A[Input Tensor] --> C[Hyper-Kernel Generation]
B[Context Tensor] --> C
C --> D[Context-Dependent Weights]
D --> E[Weight Computation]
E --> F[Transformed Features]
G[Hyper-Kernels] --> C
H[Context Processing] --> C
style A fill:#e6f3ff,stroke:#4a86e8
style B fill:#e6f3ff,stroke:#4a86e8
style F fill:#e8f5e9,stroke:#66bb6a
style C fill:#fff9e6,stroke:#ffb74d
style D fill:#f3e5f5,stroke:#9c27b0
style E fill:#e1f5fe,stroke:#03a9f4
π‘ Why Use This Layer?
| Challenge | Traditional Approach | HyperZZWOperator's Solution |
|---|---|---|
| Context Processing | Fixed transformations | π― Context-dependent transformations |
| Specialized Processing | Generic processing | β‘ Specialized transformations with hyper-kernels |
| Context Awareness | No context consideration | π§ Context-aware processing |
| Advanced Architectures | Standard layer stacking | π Specialized component for advanced architectures |
π Use Cases
- Context-Aware Processing: Processing that depends on contextual information
- Specialized Transformations: Advanced transformations with hyper-kernels
- Advanced Architectures: Components for sophisticated neural networks
- Context-Dependent Weights: Learning context-dependent weight patterns
- Specialized Models: Building specialized models like Terminator
π Quick Start
Basic Usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
In a Sequential Model
1 2 3 4 5 | |
In a Functional Model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
Advanced Configuration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
π API Reference
kerasfactory.layers.HyperZZWOperator
This module implements a HyperZZWOperator layer that computes context-dependent weights by multiplying inputs with hyper-kernels. This is a specialized layer for the Terminator model.
Classes
HyperZZWOperator
1 2 3 4 5 6 | |
A layer that computes context-dependent weights by multiplying inputs with hyper-kernels.
This layer takes two inputs: the original input tensor and a context tensor. It generates hyper-kernels from the context and performs a context-dependent transformation of the input.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_dim |
int
|
Dimension of the input features. |
required |
context_dim |
int | None
|
Optional dimension of the context features. If not provided, it will be inferred. |
None
|
name |
str | None
|
Optional name for the layer. |
None
|
Input
A list of two tensors: - inputs[0]: Input tensor with shape (batch_size, input_dim). - inputs[1]: Context tensor with shape (batch_size, context_dim).
Output shape
2D tensor with shape: (batch_size, input_dim) (same as input)
Example
1 2 3 4 5 6 7 8 9 10 11 | |
Initialize the HyperZZWOperator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_dim |
int
|
Input dimension. |
required |
context_dim |
int | None
|
Context dimension. |
None
|
name |
str | None
|
Name of the layer. |
None
|
**kwargs |
Any
|
Additional keyword arguments. |
{}
|
Source code in kerasfactory/layers/HyperZZWOperator.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | |
π§ Parameters Deep Dive
input_dim (int)
- Purpose: Dimension of the input features
- Range: 1 to 1000+ (typically 16-256)
- Impact: Determines the input feature dimension
- Recommendation: Match the actual input feature dimension
context_dim (int, optional)
- Purpose: Dimension of the context features
- Range: 1 to 1000+ (typically 8-128)
- Impact: Determines the context feature dimension
- Recommendation: Use appropriate context dimension for your use case
π Performance Characteristics
- Speed: β‘β‘β‘ Fast for small to medium models, scales with dimensions
- Memory: πΎπΎπΎ Moderate memory usage due to hyper-kernel computation
- Accuracy: π―π―π―π― Excellent for context-dependent processing
- Best For: Context-aware processing and specialized transformations
π¨ Examples
Example 1: Context-Aware Processing
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | |
Example 2: Specialized Transformation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | |
Example 3: Context Analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
π‘ Tips & Best Practices
- Input Dimension: Must match the actual input feature dimension
- Context Dimension: Use appropriate context dimension for your use case
- Context Quality: Ensure context information is meaningful and relevant
- Multiple Inputs: Use functional API for multiple input models
- Specialized Use: Best for specialized transformations and context-aware processing
- Architecture: Use as components in advanced architectures
β οΈ Common Pitfalls
- Input Format: Must be a list of [input_tensor, context_tensor]
- Input Dimension: Must be positive integer
- Context Dimension: Must be positive integer
- Memory Usage: Scales with input and context dimensions
- Complexity: More complex than standard layers
π Related Layers
- SlowNetwork - Multi-layer network processing
- GatedResidualNetwork - Gated residual networks
- TransformerBlock - Transformer processing
- SparseAttentionWeighting - Sparse attention weighting
π Further Reading
- Hyper-Kernels - Hyper-parameter concepts
- Context-Aware Processing - Context awareness concepts
- Specialized Transformations - Transformation concepts
- KerasFactory Layer Explorer - Browse all available layers
- Feature Engineering Tutorial - Complete guide to feature engineering