📈 MultiScaleTrendMixing
📈 MultiScaleTrendMixing
🟡 Intermediate
✅ Stable
⏱️ Time Series
🎯 Overview
The MultiScaleTrendMixing layer mixes trend patterns across multiple time scales in a top-down (fine-to-coarse) fashion. It:
- Upsamples trend patterns from coarser scales
- Applies Dense Transformations at each scale
- Combines information from multiple scales
- Produces Multi-Scale Representations of trends
Complements MultiScaleSeasonMixing for complete TimeMixer encoding.
🔍 How It Works
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | |
💡 Why Use This Layer?
Multi-scale trend analysis captures: - Long-term patterns at coarse scales - Short-term variations at fine scales - Hierarchical structure of trends
📊 Use Cases
- Multi-Horizon Forecasting: Different trend scales
- Anomaly Detection: Trend changes at multiple scales
- TimeMixer Encoder: Core component for trend decomposition
🚀 Quick Start
1 2 3 4 5 6 7 8 9 10 11 12 | |
🔧 API Reference
1 2 3 4 5 6 7 | |
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
seq_len |
int |
— | Sequence length |
down_sampling_window |
int |
2 | Sampling factor |
down_sampling_layers |
int |
1 | Number of layers |
name |
str \| None |
None | Optional layer name |
🔗 Related Layers
MultiScaleSeasonMixing- Seasonal version (bottom-up)PastDecomposableMixing- Main encoder block
Last Updated: 2025-11-04 | Keras: 3.0+ | Status: ✅ Production Ready